Міністерство освіти і науки України

Національний гірничий університет

Дніпропетровськ

2006

Міністерство освіти і науки України

Національний гірничий університет
Збірка текстів «Комп’ютери» для самостійної та індивідуальної

 роботи студентів перших, других курсів напрямів підготовки

0802 Прикладна математика, 0804 Комп’ютерні науки,

0915 Комп’ютерна інженерія, 0924 Телекомунікація

Модуль 3

 Затверджено до видання

 навчально-методичним

 управлінням університету

Дніпропетровськ

НГУ

2006

ЗБІРКА ТЕКСТІВ «КОМП’ЮТЕРИ» ДЛЯ САМОСТІЙНОЇ ТА ІНДИВІДУАЛЬНОЇ РОБОТИ СТУДЕНТІВ ПЕРШИХ, ДРУГИХ КУРСІВ НАПРЯМІВ ПІДГОТОВКИ 0802. Прикладна математика. 0804. Комп’ютерні науки. 0915. Комп’ютерна інженерія. 0924. Телекомунікація. Модуль 3 (Частина 3)/ Упорядники І.І. Зуєнок, Л.О.Токар. – Дніпропетровськ: Національний гірничий університет, 2006 - 61 c.

Упорядники: І.І.Зуєнок, доц. (Перелік рекомендованих завдань для самостійної та індивідуальної роботи з текстами, Тексти 1 - 2)

 Л.О. Токар, ст.викл. (Текст 3)

Відповідальна за випуск завідувачка кафедри іноземних мов
С.І. Кострицька, проф.
Друкується в редакційній обробці упорядників.

CONTENTS
Section 1. Programming. Programming Languages

Text 1. Java 4
Text 2. Delphi 24

Text 3. NSIS 37

 List of activities 60
Section 1. Programming. Programming Languages

Text 1.

[image: image1.png]o -
UNLEASHED

 HYPERLINK "file:///X:\\IT%20library\\Java\\ch02.htm"

 HYPERLINK "file:///X:\\IT%20library\\Java\\httoc.htm"
[image: image3.png]

 HYPERLINK "file:///X:\\cgi-bin\\bag?isbn=1-57521-049-5&last=/bookstore"
[image: image4.png]ORDER
BoOKk

 HYPERLINK "file:///X:\\mcp\\index.html"
[image: image5.png]

 HYPERLINK "file:///X:\\IT%20library\\Java\\htindex.htm"
[image: image6.png]

 HYPERLINK "file:///X:\\IT%20library\\Java\\ch04.htm"
[image: image7.png]FORWAROIZ

Java’s Design Is Flexible and Dynamic

The Java programming language is uniquely suited for distributing executable content over networks. Java also offers a set of functions similar to many other programming languages. This chapter presents an overview of the technical design of Java. I begin with a minimal example of a “hello world” Java program. This should help you understand how Java and HTML connect. Using this information, you can then try out some of the Java programs shown in later parts of this book.

Java also has specialized characteristics. In the second part of this chapter, I discuss in more technical detail how Java supports executable, distributed applications.

A Hello to Java

The first part of understanding the technical details of Java is learning how Java interacts with the Web’s hypertext. The example shown in this section demonstrates how a special tag of the hypertext markup language (HTML) associates a Java program called an applet to a page on the Web. Viewed through a Java-enabled Web browser, a page with a Java applet can come alive with animation or interaction.

Java’s Connection to the Web

As a language for delivering information on the Web, Java connects to the Web’s hypertext markup language (HTML) using a special tag called APPLET. Figure 2.1 summarizes this connection:

1. In response to a request from a user of a Web browser, a document on a Web server written in HTML is downloaded to the user’s browser.

2. If the HTML document contains an APPLET tag and the user’s Web browser is Java-enabled, the browser looks for the value of the Code attribute which identifies the Java bytecodes defining the applet.

3. The applet bytecodes are downloaded from the Web server (or possibly some other Web server or network site identified by attributes of the APPLET tag) and placed on the user’s host computer.

4. The user’s Java-enabled browser interprets these bytecodes and runs the applet in the user’s browser. The applet commonly will provide a visual indication that it is operating and possibly accept input from some combination of the user’s cursor position, mouse buttons, or keyboard. Once the applet is downloaded, it need not be downloaded again, even if the applet code defines repeated loops or other interaction. The user might use a downloaded applet several times over the course of an online session without any more network retrievals.

[image: image8.png]

FIGURE 2.1.

Java’s connection to the Web through the APPLET tag.
A technical understanding of Java also requires a familiarity with HTML. HTML is the markup language used to create the documents displayed in Web browsers. HTML is not a layout language for describing how a page of hypertext should look (although there are many features of HTML that can be used to manipulate a page’s appearance). Rather, HTML tags the structure of a document and the meaning of text, so that a browser can display it in a scheme based on that browser’s design and the user’s preferences for the font size, style, and other features.

An HTML document consists of text and tags that mark the structure of the document. Tags in an HTML document are delimited by the brackets < and >. Some tags always appear in a pair, as a start and end tag. For example, you can identify the title of an HTML document by placing the tags <TITLE> and </TITLE> around the text of the document’s title. Other tags don’t require a corresponding ending tag. For example, you can identify a paragraph start using the <P> tag.

Some tags have attributes, which qualify the tag’s meaning. For example, the APPLET tag has the attributes Code as well as Height and Width.

Here is a simple HTML document:

<HTML>

<HEAD>

 <TITLE>Example HTML Document</TITLE>

</HEAD>

<BODY>

 <P>

 This is the body of the document.

 This is the first item in an ordered list.

 This is the second item.

</BODY>

</HTML>

When a Web browser interprets these HTML tags and text, it displays the document without the brackets < and >. A text-only browser renders this simple HTML example as

Example HTML Document

This is the body of the document.

 1. This is the first item in an ordered list.

 2. This is the second item.

The document http://www.december.com/works/wdg/quickref.html contains HTML tags presented in a reference table, showing many more features of HTML that are available. The simple HTML example shown here is recognized by Sun’s HotJava and other Java-enabled browsers and should be enough to get you started in understanding how HTML connects to Java and testing simple applets.

A Simple Java Program

The APPLET tag in an HTML document identifies the name of a Java program called an applet to be included in a Web page. The name of the applet is called its class name. This name is associated with the executable byte codes that run the applet.

For example, the following HTML example demonstrates how you can include an applet in a Web document. If you want to test this, put the following lines in a file called HelloWorld.html:
<HTML>

<HEAD>

 <TITLE>HelloWorld</TITLE>

</HEAD>

<BODY>

 <P>”This is it!”

 <APPLET Code=”HelloWorld.class” Width=”600" Height=”300">

 </APPLET>

</BODY>

</HTML>

Note that there is an open APPLET tag, <APPLET>, and a close APPLET tag, </APPLET>. The attributes shown here are Code, to identify the class file which contains the Java bytecodes and the Width and Height attributes, measured in pixels, to describe how much room should be reserved on the Web page for the applet.

	THE APPLET TAG SYNTAX

	Java uses an APPLET tag to place executable content in an HTML document.

General Format
<APPLET

 Codebase = “path to directory containing class files”

 Code = “name of class file”

 Width = “width of applet in pixels”

 Height = “height of applet in pixels”>

 <PARAM Name=”parameter name” Value=”value of parameter”>

 <PARAM Name=”parameter name” Value=”value of parameter”>

</APPLET>

The parameter values are given to the applet for use in its computations.
Here is a sample use of the APPLET tag:
<APPLET

 Codebase = “http://java.sun.com/applets/applets/TumblingDuke/”

 Code = “TumbleItem.class”

 Width = “400”

 Height = “95”>

 <PARAM Name=”maxwidth” Value = “100”>

 <PARAM Name=”nimgs” Value = “16”>

 <PARAM Name=”offset” Value = “-57”>

 <PARAM Name=”img” Value = “http://java.sun.com/applets/applets/TumblingDuke/Âimages/tumble”>

</APPLET>

Of course, you need to create the Java source code for the applet named HelloWorld. You can find more details on programming in Java in Chapter 12, “Java Language Fundamentals.” For now, here is a minimal Java applet as a simple demonstration:

import java.awt.Graphics;

/**

 A first hello.

 */

public class HelloWorld extends java.applet.Applet {

 public void init() {

 resize(600, 300);

 }

 public void paint(Graphics context) {

 context.drawString(“Hello, world!”, 50, 100);

 }

}
	THE HelloWorld JAVA SOURCE CODE

	The source code for HelloWorld is on the CD-ROM that accompanies this book. I also provide the source code for the HelloWorld and other introductory Java applets at my book support Web page for Presenting Java at http://www.december.com/works/java.html.

You can place Java code in a file named HelloWorld.java. Next, you have to compile the Java source code using the Java compiler, javac. At the operating system prompt ($), enter:

$ javac HelloWorld.java

If there are no errors, the compiler will create a file named HelloWorld.class that contains the bytecodes for the HelloWorld applet.

So at this point, you have the following:

· A file called HelloWorld.html. This is the hypertext markup language (HTML) source file.

· A file called HelloWorld.java. This is the Java language source file.

· A file called HelloWorld.class. This is the Java bytecode file.
Figure 2.2 summarizes the Java source code and compilation relationships.

If you have a Java-enabled browser, you can test this applet. Use the browser to open the file HelloWorld.html. Alternatively, you can also use the applet viewer supplied with the Java Developer’s Kit (JDK) to view applets without having to make an HTML page to reference them. Figure 2.3 shows what this example looks like in Netscape Navigator.

[image: image9.png]

FIGURE 2.2.

Java source code and compilation relationships.
[image: image10.png]

FIGURE 2.3.

Java browser display of the HelloWorld applet.
Java Technical Overview

The preceding example concretely demonstrates the connection of Java applets to the Web through the APPLET tag. But this is only a view of Java from a very beginning perspective. To help you understand Java’s design and potential, this section provides a technical and conceptual overview of the language and its role in online communication.

Java is an object-oriented programming language that is used in conjunction with Java-enabled Web browsers. These browsers can interpret the bytecodes created by the Java language compiler. The technical design of Java is architecture neutral. The term architecture in this sense refers to computer hardware. For example, your computer’s architecture could be an IBM personal computer with an Intel 386 chip. Programmers can create Java programs without having to worry about this underlying architecture of a user’s computer. Instead, the HotJava browser is customized to the user’s architecture. The HotJava browser interprets the bytecodes for the particular architecture of the user. This is a key characteristic of Java’s technical design.
The Network Communication Support Ring Around Java

Java’s technical characteristics also place it within the larger context of online communication. We can step back from the Java source and bytecode files and look at the “big picture” of how Java fits into cyberspace.

The operation of Java and Java-enabled browsers on the Web requires the interoperation of a variety of network systems. Of course, you don’t have to understand the interoperation of all of these systems to use Java or a Java-enabled browser. But, stepping back a bit from the applet-scale view of Java, we can look at its place in a “support ring” of networks and applications.

The goal of Java is to bring executable content to the Web. When installed, a Java-enabled browser can provide an interface to animated and interactive applications. To view and interact with these applications, you must have a computer with a Java-enabled browser installed. If you want to download content from all over the Web, of course you also must have an Internet connection.

Beginning with the widest context for the operation of the Java technology, let’s take a look at the systems necessary to support Java when delivering information globally (again, Java can be used on local networks not requiring the Internet, collapsing the set of support rings described here considerably):

1. Cyberspace is the mental model people have for communicating or interacting online or through computers. Cyberspace activity includes variety of information, communication, and interaction. Cyberspace can be thought of as consisting of non-networked and networked regions. The networked region in cyberspace includes activity on connected local, regional, and global computer networks. The non-networked region might be standalone personal computer applications like word processors or CD-ROMs that contain no network references.

2. The Internet computer network serves as a vehicle for data communication for many information dissemination protocols. Through gateways, many other networks in cyberspace can exchange data with the Internet. Because of this and also because of the large amount of information available on it, the Internet serves as a common ground for the networked region of cyberspace.

3. The Web is an application that relies on a client/server model for data communication for distributing hypermedia. While the Web can operate on local networks that have no connection to the Internet, the Web is popularly known for its collection of information that is available globally through the Internet.

4. A Web client, known as a browser, is a software program that interprets and displays information disseminated using a variety of Internet information protocols. A Web browser is a user’s interface into the Web. A pre-Java Age (Mosaic class) browser usually operates in conjunction with a variety of helper applications to display multimedia. A Java-enabled browser can dynamically learn new protocols and media content types, so that it need not rely on these helper applications. However, a Netscape 2.0 browser, while Java-enabled, still makes use of helper applications, because the entire content of the Web isn’t Java-ized.

5. HTML is used to create hypertext for the Web and marks the semantic structure of Web documents. HTML consists of tags and entities that identify the structure and meaning of text in documents. Documents contain references to other resources using a system of Uniform Resource Locators (URLs).

6. The HTML APPLET tag associates Java applications with HTML documents. This tag occurs in an HTML document and identifies a Java applet that will be placed in that document.

7. A Java programmer prepares a file of human-readable Java source code. This source code defines an applet, which is a class in the hierarchy of classes that make up the Java language.

8. A Java programmer compiles a Java source code and makes the resulting bytecodes available for use through a reference to them in an APPLET tag in an HTML document.

9. HotJava, or any other Java-enabled browser, downloads hypertext as well as the executable bytecodes of the applet. The browser interprets and displays the applet, allowing a user to view or interact with the applet.

Figure 2.4 summarizes the support rings for Java as it is used for worldwide distribution of information.

[image: image11.png]

FIGURE 2.4.

The support ring of systems around Java.
Again, you don’t have to know how to set up the entire range of networks, software, and equipment in Java’s “support ring.” All you need is to install a Java-enabled browser on your Internet-accessible system. From your point of view as a user, your main focus is your browser, or the interior fourth ring, of Figure 2.4. A Java programmer, in contrast, inhabits the seventh ring, and tries to meld the user’s experience of the Web’s hypertext with the specialized content Java makes possible.

You can use Figure 2.4 to help place yourself in cyberspace as you fulfill different roles as an information user or producer.

Characteristics of Java as a Programming Language

While users may want to have some awareness of how Java fits into online communication, programmers need to understand more specific technical characteristics of Java. The description in this section introduces many terms programmers should learn.

According to the information provided by Sun Microsystems (http://java.sun.com/), Java is a

“ …simple, object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high-performance, multithreaded, and dynamic language.”
This characterization identifies the key technical features of Java as shown in the following sections.

Simple

The developers of Java based it on the C++ programming language, but removed many of the language features that are rarely used or often used poorly. C++ is a language for object-oriented programming and offers very powerful features. However, as is the case with many languages designed to have power, some features often cause problems. Programmers can create code that contains errors in logic or is incomprehensible to other programmers trying to read it. Because the majority of the cost of software engineering is often code maintenance rather than code creation. This shift to understandable code rather than powerful but poorly understood code can help reduce software costs. Specifically, Java differs from C++ (and C) in these ways:

1. Java does not support the struct, union, and pointer data types.

2. Java does not support typedef or #define.

3. Java differs in its handling of certain operators and does not permit operator overloading.

4. Java does not support multiple inheritance.

5. Java handles command-line arguments differently than C or C++.

6. Java has a String class as part of the java.lang package. This differs from the null-terminated array of characters as used in C and C++.

7. Java has an automatic system for allocating and freeing memory (garbage collection), so it is unnecessary to use memory allocation and de-allocation functions as in C and C++.

Object-Oriented

Like C++, Java can support an object-oriented approach to writing software. Ideally, object-oriented design can permit the creation of software components that can be reused.

Object-oriented programming is based upon modeling the world in terms of software components called objects. An object consists of data and operations that can be performed on that data called methods. These methods can encapsulate, or protect, an object’s data because programmers can create objects in which the methods are the only way to change the state of the data.

Another quality of object-orientation is inheritance. Objects can use characteristics of other objects without having to reproduce the functionality in those objects that supports those characteristics. Inheritance thus helps in software re-use, because programmers can create methods that do a specific job exactly once.

Another benefit of inheritance is software organization and understandability. By having objects organized according to classes, each object in a class inherits characteristics from parent objects. This makes the job of documenting, understanding, and benefiting from previous generations of software easier, because the functionality of the software has incrementally grown as more objects are created. Objects at the end of a long inheritance chain can be very specialized and powerful. Figure 2.5 summarizes the general qualities of data encapsulation, methods, and inheritance of an object-oriented language.

Technically, Java’s object-oriented features are those of C++ with extensions from Objective C for dynamic method resolution.

Distributed

Unlike the languages C++ and C, Java is specifically designed to work within a networked environment. Java has a large library of classes for communicating using the Internet’s TCP/IP protocol suite, including protocols such as HTTP and FTP. Java code can manipulate resources via URLs as easily as programmers are used to accessing a local file system using C or C++.

Interpreted

When the Java compiler translates a Java class source file to byte codes, this byte code class file can be run on any machine that runs a Java interpreter or Java-enabled browser. This allows the Java code to be written independently of the users’ platforms. Interpretation also eliminates the compile and run cycle for the client because the byte codes are not specific to a given machine but interpreted.

Robust

Robust software doesn’t “break” easily because of programming bugs or logic errors in it. A programming language that encourages robust software often places more restrictions on the programmer when he or she is writing the source code. These restrictions include those on data types and the use of pointers. The C programming language is notoriously lax in its checking of compatible data types during compilation and runtime. C++ was designed to be more strongly typed than C; however, C++ retains some of C’s approach toward typing. In Java, typing is more rigorous: a programmer cannot turn an arbitrary integer into a pointer by casting, for example. Also, Java does not support pointer arithmetic but has arrays instead. These simplifications eliminate some of the “tricks” that C programmers could use to access arbitrary areas of memory. In particular, Java does not allow the programmer to overwrite memory and corrupt other data through pointers. In contrast, a C programmer often can accidentally (or deliberately) overwrite or corrupt data.

Secure

Because Java works in networked environments, the issue of security is one that should be of concern to developers. Plans are in the works for Java to use public-key encryption techniques to authenticate data. In its present form, Java puts limits on pointers so that developers cannot forge access to memory where not permitted. These aspects of Java enable a more secure software environment. The last section of this chapter outlines the layers of Java’s security in more detail.

Architecture Neutral

The Java compiler creates byte codes that are sent to the requesting browser and interpreted on the browser’s host machine, which has the Java interpreter or a Java-enabled browser installed.

Portable

The quality of being architecture neutral allows for a great deal of portability. However, another aspect of portability is how the hardware interprets arithmetic operations. In C and C++, source code may run slightly differently on different hardware platforms because of how these platforms implement arithmetic operations. In Java, this has been simplified. An integer type in Java, int, is a signed, two’s complement 32-bit integer. A real number, float, is always a 32-bit floating-point number defined by the IEEE 754 standard. These consistencies make it possible to have the assurance that any result on one computer with Java can be replicated on another.

High-Performance

Although Java byte codes are interpreted, the performance sometimes isn’t as fast as direct compilation and execution on a particular hardware platform. Java compilation includes an option to translate the bytecodes into machine code for a particular hardware platform. This can give the same efficiency as a traditional compile and load process. According to Sun Microsystems testing, performance of this byte code to machine code translation is “almost indistinguishable” from direct compilation from C or C++ programs.

Multithreaded

Java is a language that can be used to create applications in which several things happen at once. Based on a system of routines that allow for multiple “threads” of events based on C. A. R. Hoare’s monitor and condition paradigm, Java presents the programmer with a way to support real-time, interactive behavior in programs.

Dynamic

Unlike C++ code, which often requires complete recompilation if a parent class is changed, Java uses a method of interfaces to relieve this dependency. The result is that Java programs can allow for new methods and instance variables in objects in a library without affecting their dependent client objects.

[image: image12.png]

FIGURE 2.5.
Object-orientation in software.

HotJava Is a New Kind of Web Browser

The HotJava browser that showcases Java marks the start of a new generation of smart browsers for the Web. Not constrained to a fixed set of functionality, the HotJava browser can adjust and learn new protocols and formats dynamically. Developers of Web information using Java need no longer be constrained to the text, graphics, and relatively low-quality multimedia of the fixed set available for Web browsers in the pre-Java age. Instead, the HotJava browser opens possibilities for new protocols and new media formats never before seen on the Web.

Through the past half-decade of development of the World Wide Web, new browser technologies have often altered the common view of what the Web and online communication could be. When the Mosaic browser was released in 1993, it rocketed the Web to the attention of the general public because of the graphical, seamless appearance it gave to the Web. Instead of a disparate set of tools to access a variety of information spaces, Mosaic dramatically and visually integrated Internet information. Its point-and-click operation changed ideas about what a Web browser could be, and its immediate successor, Netscape, has likewise grown in popularity and continued to push the bounds of what is presented on the Web.

HotJava, however, marks a new stage of technological evolution of browsers. HotJava breaks the model of Web browsers as only filters for displaying network information; rather, a Java-age browser acts more like an intelligent interpreter of executable content and a displayer for new protocol and media formats. The 2.0 release and above of Netscape Communications’ Navigator browser is Java-enabled. Netscape justifiably characterizes their browser as a platform for development and applications rather than just a Web browser.

Pre-Java Browsers

The earliest browser of the Web was the line-mode browser from CERN. The subsequent Mosaic-class browsers (Mosaic and Netscape from 1993 to mid-1995) dramatically opened the graphical view of the Web. However, the Mosaic-type browsers acted as an information filter to Internet-based information. Encoded into these browsers was knowledge of the fundamental Internet protocols and media formats (such as HTTP, NNTP, Gopher, FTP, HTML, GIF). The browsers matched this knowledge with the protocols and media formats found on the Net, and then displayed the results. Figure 2.6 illustrates this operation as the browser finds material on the Net and interprets it according to its internal programming for protocols or common media formats. These browsers also used helper applications to display specialized media formats such as movies or sound.

[image: image13.png]

FIGURE 2.6.
Pre-Java browsers acted as filters.

A pre-Java browser was very knowledgeable about the common protocols and media formats about the network (and therefore very “bulky”). Unfortunately, a pre-Java browser could not handle protocols for which it had not been programmed or media formats for which it did not have a helper application available. These are the technical shortcomings that a Java-age browser addresses.

Java-Age Browsers

A Java-age browser is lightweight because it actually has no pre-defined protocols or media formats programmed into its core functionality; instead the core functionality of a HotJava browser consists of the capability to learn how to interpret any protocol or media format. Of course, the HotJava browser is told about the most common protocols and formats as part of its distribution package. In addition, any new format or protocol that a Java programmer might devise, a HotJava browser can learn.

As Figure 2.7 shows, a Java-age browser is “lightweight,” not coming with a monolithic store of knowledge of the Web, but with the most important capbility of all—the ability to learn.

[image: image14.png]

FIGURE 2.7.

The Java-age browser can learn.
Java in Operation

Another way to put the Java language, a Java-enabled browser, and the larger context of online communications into perspective is to review the processes that occur when a user with a Java-enabled browser requests a page containing a Java applet. Figure 2.8 shows this process.

1. The user sends a request for an HTML document to the information provider’s server.

2. The HTML document is returned to the user’s browser. The document contains the APPLET tag, which identifies the applet.

3. The corresponding applet bytecode is transferred to the user’s host. This bytecode had been previously created by the Java compiler using the Java source code file for that applet.

4. The Java-enabled browser on the user’s host interprets the bytecodes and provides display.

5. The user may have further interaction with the applet but with no further downloading from the provider’s Web server. This is because the bytecode contains all the information necessary to interpret the applet.

[image: image15.png]

FIGURE 2.8.

Java operation within a Web page.
Java Software Components

Another aspect of the technical make-up of the Java environment is the software components that comprise its environment. See the Sun Microsystems Java site (http://java.sun.com/) for complete details on obtaining the Java Developer’s Kit (JDK). Programmers need to learn the vocabulary of the pieces of the JDK as well as terms for what can be created with it.

Java Language Constructs

Java is the programming language used to develop executable, distributed applications for delivery to a Java-enabled browser or the Java Interpreter. A Java programmer can create the following:

· applets: Programs that are referenced in HTML pages through the APPLET tag and displayed in a Java-enabled browser. The simple “hello world” program shown at the start of this chapter is an applet.

· applications: Standalone programs written in Java and executed independently of a browser. This execution is done using the Java interpreter, java, included in the Java code distribution. The input and output of these applications need not be through the command line or text only. The HotJava browser itself is a Java application.

· protocol handlers: Programs that are loaded into the user’s HotJava browser and interpret a protocol. These protocols include standard ones such as HTTP or programmer-defined protocols.

· content handlers: A program loaded into the user’s HotJava browser, which interprets files of a type defined by the Java programmer. The Java programmer provides the necessary code for the user’s HotJava browser to display/interpret this special format.

· native methods: Methods that are declared in a Java class but implemented in C. These native methods essentially allow a Java programmer to access C code from Java.
Java Distribution Software

The Java Development Kit available from Sun Microsystems includes the following pieces:

· Java Applet Viewer. This lets you run and test applets without having to create an HTML page to refer to it. Note that the beta release of the JDK included an applet viewer instead of an updated HotJava browser.

· Java Compiler. This is the software used to translate the human-readable Java source code to machine-readable byte codes. The Java compiler is invoked using javac command.

· Java Language Runtime. This is the environment for interpreting Java applications.

· Java Debugger API and Prototype Debugger. This is a command-line debugger that uses this API.
The Java Application Programming Interface (API)

The Java Application Programming Interface (API) is a set of classes that are distributed with the JDK and which programmers can use in Java applications. The documentation of the API that is provided online is key reference material for Java programmers. The API consists of the packages in the Java language. The API documentation includes a list of

· All packages. These include:
java.applet
java.awt
java.awt.image
java.awt.peer
java.io
java.lang
java.net
java.util

· All classes in a package. At the package level, information available includes:
Interfaces
Classes
Exceptions

· Documentation on each class. This includes:
Variables
Constructors
Methods

The Java Virtual Machine Specification

A document available from the Sun Microsystems Java site (http://java.sun.com/) called “The Java Virtual Machine,’ specifies how the Java language is designed to exchange executable content across networks. The aim of this specification is to describe Java as a non-proprietary, open language that may be implemented by many companies and sold as a package.

The Java Virtual Machine specification describes in abstract terms how Java operates. This leaves the details of implementation up to the programmers who creates Java interpreters and compilers. The Java Virtual Machine specification also concretely defines the specific interchange format for Java code. This is called “The Java Interchange Specification.”

The other part of the Virtual Machine specification defines the abstractions that can be left to the implementor. These abstractions are not related to the interchange of Java code. These include, for example, management of runtime data areas, garbage collection algorithms, the implementation of the compiler and other Java environment software, and optimization algorithms on compiled Java code.

Java Security

Because a HotJava browser downloads code across the network and then executes it on the user’s host, security is a major concern for Java-enabled browser users and Java programmers.

HotJava includes several layers of security, including the following:

· The Java language itself includes tight restrictions on memory access very different from the memory model used in the C language. These restrictions include removal of pointer arithmetic and removal of illegal cast operators.

· A byte code verification routine in the Java interpreter verifies that byte codes don’t violate any language constructs (which might happen if an altered Java compiler were used). This verification routine checks to make sure the code doesn’t forge pointers, access restricted memory, or access objects other than according to their definition. This check also ensures that method calls include the correct number of arguments of the right type, and that there are no stack overflows.

· A verification of class name and access restrictions during loading.

· An interface security system that enforces security policies at many levels.

· At the file access level, if a byte code attempts to access a file to which it has no permissions, a dialog box will pop up enabling the user to continue or stop the execution.

· At the network level, future releases will have facilities to use public-key encryption and other cryptographic techniques to verify the source of the code and its integrity after having passed through the network. This encryption technology will be the key to secure financial transactions across the network.

· At runtime, information about the origin of the byte code can be used to decide what that code can do. The security mechanism can tell if a byte code originated from inside a firewall or not. You can set a security policy that restricts code that you don’t trust.
Summary

The Java programming language is uniquely designed to deliver executable content across networks. As a language, it flexibly offers features for programmers to create a variety of software. Java also assures interoperability among platforms as well as security:

· The Java programming language works in conjunction with a special kind of browser and byte code interpreter. Java can exist within the context of World Wide Web communication and therefore “sits on top of” a set of applications on networks for data communications to support information retrieval.

· The Java language is object-oriented and specially designed to support distributed, executable applications.

· In operation, the Java language compiler creates byte codes that are downloaded across the network to a user’s computer. The user’s computer runs these byte codes.

· Components of Java software include the HotJava browser, the Java interpreter, the Java compiler, and tools for developing Java applications.

· Java’s designs for security are tailored for distributing executable content on networks.

Text 2. Delphi (Manual.)

C h a p t e r 1.

Introduction

The Developer’s Guide describes intermediate and advanced development topics, such as building client/server database applications, writing custom components, and creating Internet Web server applications. It allows you to build applications that meet many industry-standard specifications such as SOAP, TCP/IP, COM+, and ActiveX. Many of the advanced features that support Web development, advanced XML technologies, and database development require components or wizards that are not available in all versions of Delphi.

The Developer’s Guide assumes you are familiar with using Delphi and understand fundamental Delphi programming techniques. For an introduction to Delphi programming and the integrated development environment (IDE), see the Quick Start manual or the online Help.
What’s in this manual?

This manual contains five parts, as follows:

• Part I, “Programming with Delphi,” describes how to build general-purpose

Delphi applications. This part provides details on programming techniques you

can use in any Delphi application. For example, it describes how to use common Visual Component Library (VCL) or Component Library for Cross-platform (CLX) objects that make user interface programming easy. Objects are available for handling strings, manipulating text, implementing common dialogs, and so on.

This section also includes chapters on working with graphics, error and exception handling, using DLLs, OLE automation, and writing international applications.

A chapter describes how to use objects in the Borland Component Library for

Cross-Platform (CLX) to develop applications that can be compiled and run on

either Windows or Linux platforms.

The chapter on deployment details the tasks involved in deploying your

application to your application users. For example, it includes information on

effective compiler options, using InstallShield Express, licensing issues, and how to determine which packages, DLLs, and other libraries to use when building the production-quality version of your application.

• Part II, “Developing database applications,” describes how to build database applications using database tools and components. Delphi lets you access many types of databases, including local databases such as Paradox and dBASE, and network SQL server databases like InterBase, Oracle, and Sybase. You can choose from a variety of data access mechanisms, including dbExpress, the Borland Database Engine, InterbaseExpress, and ADO. To implement the more advanced database applications, you need the Delphi features that are not available in all versions.

• Part III, “Writing Internet applications,” describes how to create applications that are distributed over the internet. Delphi includes a wide array of tools for writing Web server applications, including the Web Broker architecture, which lets you create cross-platform server applications, WebSnap, which lets you design Web pages in a GUI environment, support for working with XML documents, and an architecture for using SOAP-based Web Services. For lower-level support that underlies much of the messaging in Internet applications, this section also describes how to work with socket components. The components that implement many of these features are not available in all versions of Delphi.

• Part IV, “Developing COM-based applications,” describes how to build

applications that can interoperate with other COM-based API objects on the

system such as Windows Shell extensions or multimedia applications. Delphi

contains components that support the ActiveX, COM+, and a COM-based library for COM controls that can be used for general-purpose and Web-based

applications. Support for COM controls is not available in all editions of Delphi.

To create ActiveX controls, you need the Professional or Enterprise edition.

• Part V, “Creating custom components,” describes how to design and implement your own components, and how to make them available on the Component palette of the IDE. A component can be almost any program element that you want to manipulate at design time. Implementing custom components entails deriving a new class from an existing class type in the VCL or CLX class libraries.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special text.
Developer support services

Inprise also offers a variety of support options to meet the needs of its diverse

developer community. To find out about support offerings for Delphi, refer to

http://www.borland.com/devsupport/delphi.

Additional Delphi Technical Information documents and answers to Frequently

Asked Questions (FAQs) are also available at this Web site.

From the Web site, you can access many newsgroups where Delphi developers

exchange information, tips, and techniques. The site also includes a list of books about Delphi.
Ordering printed documentation

For information about ordering additional documentation, refer to the Web site at shop.borland.com.
Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in Object Pascal code. It also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this

sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent Object Pascal keywords or compiler options.

Italics Italicized words in text represent Object Pascal identifiers, such as variable or type names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to exit a menu.”

P a r t 1
Programming with Delphi

The chapters in “Programming with Delphi” introduce concepts and skills necessary for creating Delphi applications using any edition of the product. They also introduce the concepts discussed in later sections of the Developer’s Guide.
C h a p t e r 2

Developing applications with Delphi

Borland Delphi is an object-oriented, visual programming environment for rapid

development of 32-bit applications for deployment on Windows and Linux. Using Delphi, you can create highly efficient applications with a minimum of manual coding.

Delphi provides a comprehensive class library called the Visual Component Library (VCL), Borland Component Library for Cross Platform (CLX), and a suite of Rapid Application Development (RAD) design tools, including application and form templates, and programming wizards. Delphi supports truly object-oriented programming:

• the VCL class library includes objects that encapsulate the Windows API as well as other useful programming techniques (Windows)

• the CLX class library includes objects that encapsulate the Qt library (Windows or Linux)

This chapter briefly describes the Delphi development environment and how it fits into the development life cycle. The rest of this manual provides technical details on developing general-purpose, database, Internet and Intranet applications, and includes information on creating ActiveX and COM controls and writing your own components.
Integrated development environment

When you start Delphi, you are immediately placed within the integrated

development environment, also called the IDE. This environment provides all the tools you need to design, develop, test, debug, and deploy applications.

Delphi’s development environment includes a visual form designer, Object

Inspector, Object TreeView, Component palette, Project Manager, source code editor, and debugger among other tools. Some tools may not be included in all versions of the product. You can move freely from the visual representation of an object (in the form designer), to the Object Inspector to edit the initial runtime state of the object, to the source code editor to edit the execution logic of the object. Changing code-related properties, such as the name of an event handler, in the Object Inspector automatically changes the corresponding source code. In addition, changes to the source code, such as renaming an event handler method in a form class declaration, is immediately reflected in the Object Inspector.

The IDE supports application development throughout the stages of the product life cycle—from design to deployment. Using the tools in the IDE allows for rapid prototyping and shortens development time.

A more complete overview of the development environment is presented in the

Quick Start manual included with the product. In addition, the online Help system provides help on all menus, dialogs, and windows.
Designing applications

Delphi includes all the tools necessary to start designing applications:

• A blank window, known as a form, on which to design the UI for your application.

• Extensive class libraries with many reusable objects.

• An Object Inspector for examining and changing object traits.

• A Code editor that provides direct access to the underlying program logic.

• A Project Manager for managing the files that make up one or more projects.

• Many other tools such as an image editor on the toolbar and an integrated

debugger on menus to support application development in the IDE.

• Command-line tools including compilers, linkers, and other utilities.

You can use Delphi to design any kind of 32-bit application—from general-purpose utilities to sophisticated data access programs or distributed applications. Delphi’s database tools and data-aware components let you quickly develop powerful desktop database and client/server applications. Using Delphi’s data-aware controls, you can view live data while you design your application and immediately see the results of database queries and changes to the application interface.
Chapter 5, “Building applications, components, and libraries” introduces Delphi’s support for different types of applications.

Many of the objects provided in the class library are accessible in the IDE from the Component palette. The Component palette shows all of the controls, both visual and nonvisual, that you can place on a form. Each tab contains components grouped by functionality. By convention, the names of objects in the class library begin with a T, such as TStatusBar.

One of the revolutionary things about Delphi is that you can create your own

components using Object Pascal. Most of the components provided are written in Object Pascal. You can add components that you write to the Component palette and customize the palette for your use by including new tabs if needed.

You can also use Delphi for cross platform development on both Linux and Windows by using CLX. CLX contains a set of classes that, if used instead of those in the VCL, allow your program to port between Windows and Linux.
Developing applications

As you visually design the user interface for your application, Delphi generates the underlying Object Pascal code to support the application. As you select and modify the properties of components and forms, the results of those changes appear automatically in the source code, and vice versa. You can modify the source files directly with any text editor, including the built-in Code editor. The changes you make are immediately reflected in the visual environment as well.
Creating projects

All of Delphi’s application development revolves around projects. When you create an application in Delphi you are creating a project. A project is a collection of files that make up an application. Some of these files are created at design time. Others are generated automatically when you compile the project source code.

You can view the contents of a project in a project management tool called the Project Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms contained in the unit (if there is one), and shows the paths to the files in the project.

Although you can edit many of these files directly, it is often easier and more reliable to use the visual tools in Delphi.

At the top of the project hierarchy, is a group file. You can combine multiple projects into a project group. This allows you to open more than one project at a time in the Project Manager. Project groups let you organize and work on related projects, such as applications that function together or parts of a multi-tiered application. If you are only working on one project, you do not need a project group file to create an application.

Project files, which describe individual projects, files, and associated options, have a .dpr extension. Project files contain directions for building an application or shared object. When you add and remove files using the Project Manager, the project file is updated. You specify project options using a Project Options dialog which has tabs for various aspects of your project such as forms, application, compiler. These project options are stored in the project file with the project.

Units and forms are the basic building blocks of a Delphi application. A project can share any existing form and unit file including those that reside outside the project directory tree. This includes custom procedures and functions that have been written as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current project directory; it remains in its current location. Adding the shared file to the current project registers the file name and path in the uses clause of the project file.

Delphi automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the

project reside. The compiler treats shared files the same as those created by the project itself.
Editing code

The Delphi Code editor is a full-featured ASCII editor. If using the visual

programming environment, a form is automatically displayed as part of a new

project. You can start designing your application interface by placing objects on the form and modifying how they work in the Object Inspector. But other programming tasks, such as writing event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties can be viewed and edited as text in the Code editor. You can adjust the generated code in the Code editor and add more components within the editor by typing code.

As you type code into the editor, the compiler is constantly scanning for changed and updating the form with the new layout. You can then go back to the form, view and test the changes you made in the editor and continue adjusting the form from there.

The Delphi code generation and property streaming systems are completely open to inspection. The source code for everything that is included in your final executable file—all of the VCL objects, CLX objects, RTL sources, all of the Delphi project files can be viewed and edited in the Code editor.
Compiling applications

When you have finished designing your application interface on the form, writing additional code so it does what you want, you can compile the project from the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test your application at various stages of development by compiling, building, or running it:

• When you compile, only units that have changed since the last compile are

recompiled.

• When you build, all units in the project are compiled, regardless of whether or not they have changed since the last compile. This technique is useful when you are unsure of exactly which files have or have not been changed, or when you simply want to ensure that all files are current and synchronized. It's also important to use Build when you've changed global compiler directives, to ensure that all code compiles in the proper state. You can also test the validity of your source code without attempting to compile the project.

• When you run, you compile and then execute your application. If you modified

the source code since the last compilation, the compiler recompiles those changed modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in a single project group at once. Choose Project|Compile All Projects or Project|Build

All Projects with the project group selected in the Project Manager.
Debugging applications

Delphi provides an integrated debugger that helps you find and fix errors in your

applications. The integrated debugger lets you control program execution, monitor variable values and items in data structures, and modify data values while debugging.

The integrated debugger can track down both runtime errors and logic errors. By running to specific program locations and viewing the values of variables, the functions on the call stack, and the program output, you can monitor how your program behaves and find the areas where it is not behaving as designed. The debugger is described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.

Exceptions in Delphi are classes, like other classes in Delphi, except, by convention, they begin with an E rather than the initial T for other classes.
Deploying applications

Delphi includes add-on tools to help with application deployment. For example,

InstallShield Express (not available in all versions) helps you to create an installation package for your application that includes all of the files needed for running a distributed application. Refer to Chapter 13, “Deploying applications” for specific information on deployment.

Note Not all versions of Delphi have deployment capabilities.

TeamSource software (not available in all versions) is also available for tracking

application updates.
Chapter 3 Using the component libraries

This chapter presents an overview of the component libraries and introduces some of the components that you can use while developing applications. Delphi includes both the Visual Component Library (VCL) and the Borland Component Library for Cross-Platform (CLX). The VCL is for Windows development and CLX is for crossplatform development on Windows and Linux. They are two different class libraries but they have many similarities. Objects, properties, methods, and events that are not in CLX are marked “VCL only.”
Understanding the component libraries

VCL and CLX are class libraries made up of objects, some of which are also

components or controls, that you use when developing applications. Both libraries look very similar and contain many of the same objects. Some objects in the VCL implement features that are available on Windows only such as objects that appear on the ADO, BDE, QReport, COM+, Web Services, and Servers tabs on the Component palette. Virtually all CLX objects are available on both Windows and Linux.

VCL and CLX objects are active entities that contain all necessary data and the

“methods” (code) that modify the data. The data is stored in the fields and properties of the objects, and the code is made up of methods that act upon the field and property values. Each object is declared as a “class.” All VCL and CLX objects descend from the ancestor object TObject including objects that you develop in Object Pascal.

A subset of objects are components. Components are objects that you can place on a form or data module and manipulate at design time. Components appear on the Component palette. You can specify their properties without writing code. All VCL or CLX components descend from the TComponent object.

Components are objects in the true object-oriented programming (OOP) sense

because they

• Encapsulate a set of data and data-access functions

• Inherit data and behavior from the objects they are derived from

• Operate interchangeably with other objects derived from a common ancestor,

through a concept called polymorphism

Unlike most components, objects do not appear on the Component palette. Instead, a default instance variable is declared in the unit of the object, or you have to declare one yourself.

Controls are a special kind of component that is visible to users at runtime. Controls are a subset of components. Controls are visual components that you can see when your application is running. All controls have properties in common that specify their visual attributes, such as Height and Width. The properties, methods, and events that all controls have in common are inherited from TControl.

Refer to Chapter 10, “Using CLX for cross-platform development” for details about cross-platform programming and the differences between the Windows and Linux environments. Detailed reference material on all of the objects in the VCL or CLX is accessible using online Help while you are programming. From within the code editor, place the cursor anywhere on the object and press F1 to display help on VCL or CLX components.

If you are using Kylix while developing cross-platform applications, Kylix also

includes a Developer’s Guide that is tailored for the Linux environment. You can refer to the manual both in the Kylix online Help or the printed manual provided with the Kylix product.
Properties, methods, and events

Both the VCL and CLX form hierarchies of objects that are tied to the Delphi IDE, where you can develop applications quickly. The objects in both component libraries are based on properties, methods, and events. Each object includes data members (properties), functions that operate on the data (methods), and a way to interact with users of the class (events). The VCL is written in Object Pascal, whereas CLX is based on Qt, a C++ class library.
Properties

Properties are characteristics of an object that influence either the visible behavior or the operations of the object. For example, the Visible property determines whether an object can be seen or not in an application interface. Well-designed properties make your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

• Unlike methods, which are only available at runtime, you can see and change

properties at design time and get immediate feedback as the components change in the IDE.

• Properties can be accessed in the Object Inspector where you can modify the

values of your object visually. Setting properties at design time is easier than

writing code and makes your code easier to maintain.

• Because the data is encapsulated, it is protected and private to the actual object.

• The actual calls to get and set the values are methods, so special processing can be done that is invisible to the user of the object. For example, data could reside in a table, but could appear as a normal data member to the programmer.

• You can implement logic that triggers events or modifies other data during the

access of the property. For example, changing the value of one property may

require the modification of another. You can make the change in the methods

created for the property.

• Properties can be virtual.

• A property is not restricted to a single object. Changing a one property on one

object could effect several objects. For example, setting the Checked property on a radio button effects all of the radio buttons in the group.
Methods

A method is a procedure that is always associated with a class. Methods define the behavior of an object. Class methods can access all the public, protected, and private properties and data members of the class and are commonly referred to as member functions.
Events

An event is an action or occurrence detected by a program. Most modern applications are said to be event-driven, because they are designed to respond to events. In a program, the programmer has no way of predicting the exact sequence of actions a

user will perform next. They may choose a menu item, click a button, or mark some text. You can write code to handle the events you're interested in, rather than writing code that always executes in the same restricted order.

Regardless of how an event is called, Delphi looks to see if you have written any code to handle that event. If you have, that code is executed; otherwise, the default event handling behavior takes place.

The kinds of events that can occur can be divided into two main categories:

• User events

• System events

Regardless of how the event was called, Delphi looks to see if you have assigned any code to handle that event. If you have, then that code is executed; otherwise, nothing is done.
User events

User events are actions that are initiated by the user. Examples of user events are OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the keyboard), and OnDblClick (the user double-clicked a mouse button). These events are always tied to a user's actions.
System events

System events are events that the operating system fires for you. For example, the OnTimer event (the Timer component issues one of these events whenever a predefined interval has elapsed), the OnCreate event (the component is being

created), the OnPaint event (a component or window needs to be redrawn), and so on. Usually, system events are not directly initiated by a user action.
Object Pascal and the class libraries

Object Pascal, a set of object-oriented extensions to standard Pascal, is the language of Delphi. Using Delphi’s Component palette and Object Inspector, you can place VCL or CLX components on forms and manipulate their properties without writing code.

All objects descend from TObject, an abstract class whose methods encapsulate fundamental behavior like construction, destruction, and message handling. TObject is the immediate ancestor of many simple classes.

Components in the VCL or CLX descend from the abstract class TComponent.

Components are objects that you can manipulate on forms at design time. Visual components—that is, components like TForm and TSpeedButton that appear on the screen at runtime—are called controls, and they descend from TControl.

In addition to the visual components, the component libraries contain many

nonvisual objects. The IDE allows you to add many nonvisual components to your programs by dropping them onto forms. For example, if you were writing an application that connects to a database, you might place a TDataSource component on a form. Although TDataSource is nonvisual, it is represented on the form by an icon (which doesn’t appear at runtime). You can manipulate the properties and events of TDataSource in the Object Inspector just as you would those of a visual control.

When you write classes of your own in Object Pascal, they should descend from TObject in the class library that you plan to use. Use VCL if you’re writing a Windows application or CLX if writing a cross-platform application. By deriving new classes from the appropriate base class (or one of its descendants), you provide your classes with essential functionality and ensure that they work with the other classes in the class library.
Using the object model

Object-oriented programming is an extension of structured programming that

emphasizes code reuse and encapsulation of data with functionality. Once you create an object (or, more formally, a class), you and other programmers can use it in different applications, thus reducing development time and increasing productivity.

If you want to create new components and put them on the Component palette, see
What is an object?

An object, or class, is a data type that encapsulates data and operations on data in a single unit. Before object-oriented programming, data and operations (functions) were treated as separate elements.

You can begin to understand objects if you understand Object Pascal records or structures in C. Records are made of up fields that contain data, where each field has its own type. Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain procedures and functions that operate on their data. These procedures and functions are called methods.

An object’s data elements are accessed through properties. The properties of VCL and CLX objects have values that you can change at design time without writing code. If you want a property value to change at runtime, you need to write only a small amount of code.

The combination of data and functionality in a single unit is called encapsulation. In addition to encapsulation, object-oriented programming is characterized by inheritance and polymorphism. Inheritance means that objects derive functionality from other objects (called ancestors); objects can modify their inherited behavior.

Polymorphism means that different objects derived from the same ancestor support the same method and property interfaces, which often can be called interchangeably.
Examining a Delphi object

When you create a new project, Delphi displays a new form for you to customize. In the Code editor, Delphi declares a new class type for the form and produces the code that creates the new form instance. The code generated for a new Windows application looks like this:

unit Unit1;

interface

uses Windows, Classes, Graphics, Forms, Controls, Dialogs;

type

TForm1 = class(TForm)

 private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

Implementation

{$R *.DFM}

end.

 The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains methods—code that acts on the object’s data. So far, TForm1 appears to contain no fields or methods, because you haven’t added to the form any components (the fields of the new object) and you haven’t created any event handlers (the methods of the new object). TForm1 does contain inherited fields and methods, even though you don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var

Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare more than one instance of a class type; you might want to do this, for example, to create multiple child windows in a Multiple Document Interface (MDI) application.

Each instance maintains its own data, but all instances use the same code to execute methods.

Although you haven’t added any components to the form or written any code, you already have a complete Delphi application that you can compile and run. All it does is display a blank form.

Suppose you add a button component to this form and write an OnClick event

handler that changes the color of the form when the user clicks the button.

When the user clicks the button, the form’s color changes to green. This is the eventhandler code for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);

begin

Form1.Color := clGreen;

end;

Objects can contain other objects as data fields. Each time you place a component on a form, a new field appears in the form’s type declaration. If you create the application described above and look at the code in the Code editor, this is what you see:

unit Unit1;

interface

uses Windows, Classes, Graphics, Forms, Controls;

type

TForm1 = class(TForm)

Button1: TButton;{ New data field }

procedure Button1Click(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

var

Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Button1Click(Sender: TObject);

begin

Form1.Color := clGreen;

end;

end.

TForm1 has a Button1 field that corresponds to the button you added to the form.

TButton is a class type, so Button1 refers to an object.

All the event handlers you write in Delphi are methods of the form object. Each time you create an event handler, a method is declared in the form object type. The TForm1 type now contains a new method, the Button1Click procedure, declared within the TForm1 type declaration. The code that implements the Button1Click method appears in the implementation part of the unit.

Text 3. NSIS
Features

· Generates self contained, win32 executable installer.

· Uninstall support (installer can automatically generate an uninstaller)

· Optional installer self-verification using a CRC32.

· Compression choices of zlib or bzip2 based compression. The installer can compress everything together, or individually.

· Approximately 20-40k overhead over compressed data size (depending on features enabled, compression algorithm, and so on - the default options are ~35k).

· Ability to display a license agreement.

· Ability to detect destination directory from the registry, and let the user override (or not let them)

· Customizable appearance (background, icons, text, checkmarks)

· Multiple install configurations (usually Minimal, Typical, Full), and custom configuration

· Installers can be as large as 2GB (theoretically -- when building on Win9x the limit seems to be around 500MB, however building on NT then installing on Win9x works with larger sizes)

· Optional Silent mode for automated installations

· Completely free for any use. Source included. See license.

MakeNSIS usage

NSIS installers are generated by using the 'MakeNSIS' program to compile a NSIS script (.NSI) into an installer executable. The syntax of the makensis command is:

Makensis [/Vx] [/Olog] [/LICENSE] [/PAUSE] [/NOCONFIG] [/CMDHELP [command]] [/HDRINFO] [/CD]

 [/Ddefine[=value] ...] ["/XCommand parameter" ...] [Script.nsi | - [...]]

/LICENSE displays a keen license page.

The /V switch followed by a number between 0 and 4 will set the verbosity of output accordingly. 0=no output, 1=errors only, 2=warnings and errors, 3=info, warnings, and errors, 4=all output.

The /O switch followed by a filename tells the compiler to print its log to that file (instead of the screen)

/PAUSE makes Makensis pause before quitting, which is useful when executing directly from Windows (the auto-installed shell extensions use it).

/NOCONFIG disables inclusion of [path to makensis.exe]\nsisconf.nsi . Without this parameter, installer defaults are set from nsisconf.nsi. See NSIS Configuration File.

/CMDHELP prints basic usage information for command (if specified), or all commands (if command is not specified).

/HDRINFO prints out information on what options Makensis was compiled with.

/CD tells the compiler to switch to the directory of the script it is currently compiling.

Using the /D switch one or more times will add to symbols to the globally defined list (See !define).

Using the /X switch one or more times will execute the code you specify following it. Specifying a dash (-) for the script name will tell Makensis to use the standard input as a source.

If multiple scripts are specified, they are treated as one concatenated script.

Note that the NSIS development kit installer may have set up your computer so that you can compile a .nsi file by simply right-clicking on it in explorer, and selecting 'compile'.
.NSI script format

A NSIS Script File (.nsi) is just a text file with a series of commands.

Lines beginning with ; or # are comments.

Non-comment lines are in the form of 'command [parameters]'

Anything after a ; or # that is not in a parameter (i.e. in quotes or part of another string) is treated as a comment. (i.e. "File myfile ; this is the file" would work)

For parameters that are treated as numbers, use decimal (the number) or hexadecimal (with 0x prepended to it, i.e. 0x12345AB), or octal (numbers beginning with a 0 and no x).

To represent strings that have spaces, use quotes.

Quotes only have the property of containing a parameter if they begin the parameter.

Quotes can be either single quotes, double quotes, or the backward single quote.

To extend a command over multiple lines, use a backslash (\) at the end of the line, and the next line will effectively be concatenated the end of it. For example:

 CreateShortCut "$SMPROGRAMS\NSIS\ZIP2EXE project workspace.lnk" \

 "$INSTDIR\source\zip2exe\zip2exe.dsw"

 MessageBox MB_YESNO|MB_ICONQUESTION \

 "Remove all files in your NSIS directory? (If you have anything \

you created that you want to keep, click No)" \

 IDNO NoRemoveLabel

If a file named "nsisconf.nsi" in the same directory as makensis.exe exists, it will be included by default before any scripts (unless the /NOCONFIG command line parameter is used.

To have a template .nsi generated to your needs, go here.
Installer attributes:

The commands below all adjust attributes of the installer. These attributes control how the installer looks and functions, including which pages are present in the installer, as what text is displayed in each part of each page, how the installer is named, what icon the installer uses, the default installation directory, what file it writes out, and more. Note that these attributes can be set anywhere in the file except in a Section or Function.

With the exception of InstallDir, none of these attributes allow use of Variables other than $\r and $\n in their strings.

General installer configuration

OutFile

install.exe

Specifies the output file that the MakeNSIS should write the installer to. This is just the file that MakeNSIS writes, it doesn't effect the contents of the installer.

Name

name

Sets the name of the installer. The name is usually simply the product name such as 'MyApp' or 'CrapSoft MyApp'.

Caption

caption

Sets what the titlebars of the installer will display. By default, it is 'Name Setup', where Name is specified with the Name command. You can, however, override it with 'MyApp Installer' or whatever. If you specify an empty string (""), the default will be used (you can however specify " " to achieve a blank string)

SubCaption

page_number

subcaption

Overrides the subcaptions for each of the installer pages (0=": License Agreement",1=": Installation Options",2=": Installation Directory", 3=": Installing Files", 4=": Completed"). If you specify an empty string (""), the default will be used (you can however specify " " to achieve a blank string)

BrandingText

text

Sets the text that is shown (by default it is 'Nullsoft Install System vX.XX') in the bottom of the install window. Setting this to an empty string ("") uses the default; to set the string to blank, use " " (a space).

Icon

path_to_icon.ico

Sets the icon of the installer. The icon MUST contain a 32x32x16 color icon resource (it can also contain other icons, but they will be discarded).

WindowIcon

on|off

Sets whether or not the installer's icon is in the upper left corner of the installer.

BGGradient

[off]|

[topc botc

 [textcolor|notext]

]

Specifies whether or not to use a gradient background window. If 'off', the installer will not show a background window, if no parameters are specified, the default black to blue gradient is used, and otherwise the top_color or bottom_color are used to make a gradient. Top_color and bottom_color are specified using the form RRGGBB (in hexadecimal, as in HTML, only minus the leading '#', since # can be used for comments). 'textcolor' can be specified as well, or 'notext' can be specified to turn the big background text off.

SilentInstall

normal|

silent|

silentlog

Specifies whether or not the installer should be silent. If it is 'silent' or 'silentlog', all sections are installed quietly, with no screen output from the installer itself (MessageBoxes are still displayed on error, and the script can still display whatever it wants). Note that if this is set to 'normal' and the user runs the installer with /S on the command line, it will behave as if SilentInstall 'silent' was used. Note: see also LogSet.

SilentUnInstall

normal|

silent

Specifies whether or not the uninstaller should be silent.

CRCCheck

on|off

Specifies whether or not the installer will perform a CRC on itself before allowing an install. Valid options are 'on' and 'off'. Note that if the user uses /NCRC on the command line when executing the installer, the CRC will not occur, and the user will be allowed to install a (potentially) corrupted installer.

MiscButtonText

[back button text]

[next button text]

[cancel button text]

[close button text]

Replaces the default text strings for the four buttons (< Back, Next >, Cancel and Close). If parameters are omitted, the defaults are used.

InstallButtonText

[install button text]

If parameter is specified, overrides the default install button text (of "Install") with the specified text.

FileErrorText

[file error text]

Replaces the default text that comes up when a file cannot be written to. This string can contain a reference to $0, which is the filename ($0 is temporarily changed to this value).

Install directory configuration

InstallDir

definstdir

Sets the default installation directory is. See the variables section for variables that can be used to make this string (especially $PROGRAMFILES). Note that the part of this string following the last \ will be used if the user selects 'browse', and may be appended back on to the string at install time (to disable this, end the directory with a \ (which will require the entire parameter to be enclosed with quotes)).

InstallDirRegKey

root_key

subkey

key_name

This attribute tells the installer to check a string in the registry, and use it for the install dir if that string is valid. If this attribute is present, it will override the InstallDir attribute if the registry key is valid, otherwise it will fall back to the InstallDir default. When querying the registry, this command will automatically remove any quotes. If the string ends in ".exe", it will automatically remove the filename component of the string (i.e. if the string is "C:\program files\poop\poop.exe", it will know to use "C:\program files\poop"). For more advanced install directory configuration, set $INSTDIR in .onInit.

License page configuration

LicenseText

text

[button_text]

Specifies a string that is above the license text. Omit this to not have a license displayed. If button_text is specified, it will override the default button text of "I Agree".

LicenseData

licdata.txt

Specifies a text file to use for the license that the user can read. Omit this to not have a license displayed. Note that the file must be in the evil DOS text format (\r\n, yeah!)

Component page configuration

ComponentText

[text]

[subtext]

[subtext2]

Specifies a string that is above the component list. This can be something that notifies the user what it is they are actually installing. Note that if no parameter is specified, or if the ComponentText command is omitted, then the component page will not be visible, and all of the sections will be installed. Note: if text is specified and non-empty and you leave subtext or subtext2 empty, the defaults will be used (to set one to blank, use a string like " "). empty strings mean default on subtext and subtext2. Likewise, if you wish to enable the component page, but don't want any text on the top line, set text to " ".

InstType

install_type_name |

/NOCUSTOM |

/CUSTOMSTRING=str|

/COMPONENTS..

..ONLYONCUSTOM

Adds an install type to the install type list, or disables the custom install type. There can be as many as 8 types, each one specifying the name of the install. The first type is the default (generally 'Typical'). Each type is numbered, starting at 1. See SectionIn for information on how those numbers are used. If the /NOCUSTOM switch is specified, then the "custom" install type is disabled, and the user has to choose one of the pre-defined install types. Alternatively, if the /CUSTOMSTRING switch is specified, the parameter will override the "Custom" install type text. Alternatively, if the /COMPONENTSONLYONCUSTOM flag is specified, the component list will only be shown if the "Custom" install type is selected.

EnabledBitmap

bitmap.bmp

Sets the enabled state of the listbox for the component page. It MUST be a 16 color bitmap (it can be any size, but 20x20 is preferred -- all others will be resized down... poorly).

DisabledBitmap

bitmap.bmp

Sets the disabled state of the listbox for the component page. It MUST be a 16 color bitmap (it can be any size, but 20x20 is preferred -- all others will be resized down... poorly).

SpaceTexts

[req text]

[avail text]

If parameters are specified, overrides the space required and space available text ("Space required: " and "Space available: " by default).

Directory page configuration

DirShow

show|hide

Specifies whether or not the user will see the directory selection page. Note that if 'hide' is specified, the installer will still check the validity of the installation path (using internal logic and .onVerifyInstDir if it is declared). If the path is deemed invalid, the directory page will be shown. To completely disable the Directory page (and install without prompting, even if a valid installation path is not available), specify DirText with no parameter (this might be useful if the installer installs everything into $SYSDIR or something like that).

DirText

[text]

[subtext]

[browse text]

Specifies a string that is above the directory selection area. If this command is not specified, or no parameter is specified, then the directory page is never visible to the user (even if DirShow show is specified). If subtext is specified and not empty, it overrides the default text above the path entry box ("Select the directory to install MyApp in:"). If browse button text is specified but not empty, it overrides the default browse button text ("Browse...").

AllowRootDirInstall

true|false

Controls whether or not installs are enabled to the root directory of a drive, or directly into a network share. Set to 'true' to change the default (safe) behavior, which prevents users from selecting C:\ or \\server\share as an install (and lataer on, uninstall) directory.

For additional directory selection page customizability, see .onVerifyInstDir

Install page configuration

InstallColors

/windows |

foreground background

Sets the colors to use for the install info screen (the default is 00FF00 000000. Use the form RRGGBB (in hexadecimal, as in HTML, only minus the leading '#', since # can be used for comments). Note that if "/windows" is specified as the only parameter, the default windows colors will be used.

InstProgressFlags

[flag [...]]

Valid values for flag are "smooth" (smooth the progress bar) or "colored" (color the progress bar with the colors set by InstallColors. Examples: "InstProgressFlags" (default old- school windows look), "InstProgressFlags smooth" (new smooth look), "InstProgressFlags smooth colored" (colored smooth look whee).

AutoCloseWindow

true|false

Sets whether or not the install window automatically closes when completed. Can be 'false' or 'true'. This is overrideable from a section using SetAutoClose.

ShowInstDetails

hide|show|nevershow

Sets whether or not the details of the install are shown. Can be 'hide' (the default) to hide the details by default, allowing the user to view them, or 'show' to show them by default, or 'nevershow', to prevent the user from ever seeing them. Note that sections can override this using SetDetailsView.

DetailsButtonText

[show details text]

Replaces the default details button text of "Show details", if parameter is specified (otherwise the default is used).

CompletedText

[Completed text]

Replaces the default text ("Completed") that is printed at the end of the install if parameter is specified. Otherwise, the default is used.

LIST OF ACTIVITIES
for individual work with the texts and self-study.

1. Look through the text and find out:

· What is this text about?

· What is the main idea of the text?

2. Make a plan to the text or draw its outline.

3. Write down the words from the text and put them into three columns:

	Terms

(Specific vocabulary/register)
	Semi-academic vocabulary

	Unknown words of general vocabulary

	
	
	

	
	
	

	
	
	

4. Find the definitions of the words written down or translate them into your native language.

5. Make a diagram to the text.

6. Be ready to give a presentation on the main ideas of the text. Prepare an outline and visual aids for your presentation.

7. If you have any questions to rise and discuss within the group, be ready to ask them and to give your own arguments on the issue.

8. Think on the main problems and ideas raised in the text. Are there any similar problems/ innovations in Ukraine? Be ready to speak on them.

9. Be ready to give a presentation on the situation in Ukraine on the topic described in the text.

10. Find in the text Noun + Noun Structures. Translate them into your native language paying attention to their order in English and in your native language.

11. Write a summary to the text.

12. Write a report using the information from the texts.

13. Write an abstract to the text.
14. Find the additional information on the topic of the text using libraries, periodicals, Internet, etc.

15. Prepare a report using the information from the sources you have processed (more than three).

16. Write thesis to your report which will form the basis of your future presentation.
17. Be ready to give a 5 minute presentation on the topic researched at the Students’ Scientific Conference.

18. Design and make visual aids to your presentation or prepare Power Point presentation.

Упорядники
Зуєнок

Ірина Іванівна
Токар

Лариса Олександрівна

Збірка текстів «Комп ютери»
 для самостійної роботи студентів перших, других курсів напрямів підготовки

0802 Прикладна математика, 0804 Комп’ютерні науки,

0915 Комп’ютерна інженерія, 0924 Телекомунікація

Модуль 3
Редакційно-видавничий комплекс
Підписано до друку .11.05 Формат 30х42
Папір Captain. Ризографія. Умовн. друк. арк. 2,8

Обліково-видавн. арк. Тираж прим. Зам.№
49027, м. Дніпропетровськ – 27, просп. К.Маркса, 19.
PAGE
3

